Having a detailed look at the Netgear Nighthawk M5 Mobile LTE/Router

Dr . Watson

After gaining root access to the device in the first post of this series, we will have a closer look at the device and its firmware.

This post is documenting some internals of the device which is not the most exciting stuff to read. I mainly collected it here for documentation purposes.

All information in this post has been collected from a device running firmware version NTGX55_12.04.12.00.


Netgear’s firmware is Linux-based and uses quite a lot of common open-source tools. They provide all modifications to GPL licensed code via their support area: NETGEAR Open Source Software for Programmers.

From what I can tell only their user interface and configuration management is developed by Netgear themself apart from a bunch of binary blobs provided by Qualcomm which contains the modem firmware which gets loaded to the baseband processor.

One curiosity catched my eye: there is a running X server on the device. It is used by the front-panel display of the device. A custom application developed by Netgear uses Webkit’s engine to render the touch screen interface which just like the web UI is based on HTML and Javascript.

Here is an almost complete list of open source software components which I found on the device:

  • atk (v2.28)
  • Avahi (v0.7)
  • bash (v4.4.23)
  • base-files (v3.0.14)
  • BusyBox (v1.29.3)
  • conntrack-tools (v1.0.1)
  • D-Bus (v1.12.10)
  • ddclient (v3.8.1)
  • dhcpcd (v5.2.10)
  • DiG (v9.11.5-P4)
  • Dnsmasq (v2.85)
  • ethtool (v4.19)
  • font-config (v2.12.6)
  • freetype (v2.9.1)
  • glib (v2.58.0)
  • hostapd (v2.8-devel)
  • iproute2 (iproute2-ss140804)
  • iptables (v1.6.2)
  • iw (v4.14)
  • libcap (v2.25)
  • libnfnetlink (v1.0.0)
  • Linux Kernel (v4.14.117)
  • miniupnpd
  • mtd-utils (v2.0.2)
  • nettle (v3.4)
  • OpenSSL (v1.1.1b)
  • pimd (v2.1.8)
  • pppd (v2.4.7)
  • strace (v4.24)
  • SystemD (v239)
  • tinyproxy (v1.8.3)
  • util-linux (v2.32.1)
  • wireless-tools (v30)
  • wpa_supplicant (v2.9)
  • Xorg (v1.20.1)
  • xz (v5.2.4)

Basic facts

Lets first have a look at the Kernel version:

$ uname -a
Linux sdxprairie 4.14.117 #1 PREEMPT Thu Aug 19 23:42:26 UTC 2021 armv7l GNU/Linux

/ # cat /proc/version
Linux version 4.14.117 (oe-user@oe-host) (clang version 6.0.9 for Android NDK) #1 PREEMPT Thu Aug 19 23:42:26 UTC 2021

Apparently the firmware has been built by Open Embedded as indicated by the kernel notice „oe-user„.

There is also a /target file lying around. I assume that „sdxprairie“ is Qualcomm’s name for the SDK/BSP which is used by Netgear.

$ cat /target

The application processor of the Snapdragon X55 is a fairly low powered single-core ARM v7:

$ cat /proc/cpuinfo
processor       : 0
model name      : ARMv7 Processor rev 5 (v7l)
BogoMIPS        : 38.40
Features        : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm
CPU implementer : 0x41
CPU architecture: 7
CPU variant     : 0x0
CPU part        : 0xc07
CPU revision    : 5

Hardware        : Qualcomm Technologies, Inc SDXPRAIRIE
Revision        : 0000
Serial          : 0000000000000000

With around 780 MB of RAM:

$ free -m
             total       used       free     shared    buffers     cached
Mem:           781        387        393          0          0        142
-/+ buffers/cache:        245        535
Swap:          109          0        109

SoC details

Within the SysFS we can find some details about the SoC. More details about the meaning can be found in the Kernel documentation:

SysFS EntryValue
$ cat /sys/devices/soc0/images
        CRM:            00:BOOT.SBL.4.1-00231
        Variant:        MAATANAZA
        Version:        :ntgrbc-fwbuild6
        CRM:            01:TZ.FU.5.9-00147
        Variant:        EATAANBAA
        Version:        :CRM
        CRM:            11:MPSS.HI.2.0.c3.5-00010-SDX55_CPEALL_PACK-1.403198.3
        Version:        :ntgrbc-fwbuild6

Kernel command line

$ cat /proc/cmdline<br>noinitrd rw rootwait console=ttyMSM0,115200,n8 androidboot.hardware=qcom msm_rtb.filter=0x237 androidboot.console=ttyMSM0 lpm_levels.sleep_disabled=1 firmware_class.path=/lib/firmware/updates service_locator.enable=1 net.ifnames=0 atlantic_fwd.rx_ring_size=1024 pci=pcie_bus_perf rootfstype=ubifs rootflags=bulk_read root=ubi0:rootfs ubi.mtd=24 androidboot.serialno=105d0dc7 androidboot.baseband=msm

Kernel log

Unfortunately, I was not able to capture early kernel log messages. I assume those are only printed via a serial port and lost as the circular buffer for the kernel log has not been set up.

More details…

Feel free to contact me if I missed any particular detail which is interesting for you.

A 3D-printed wall mount for Netgear Nighthawk mobile 5G/LTE routers

I have recently designed and printed a wall mount for Netgear’s Nighthawk mobile 5G/LTE routers. More specifically a Nighthawk M5 (MR5200).

I have been inspired by an existing commercial wall mount for the Nighthawk M-series routers by FTS Hennig GmbH:

My inspiration: the wall-mount and antenna adapter from FTS Hennig.

Unfortunately, the mount is with a price tag of around 50 EUR rather expensive. So I decided to use our new lab 3D-printer and try do design it myself usings AutoDesk’s Fusion 360 software. The result is released here under a creative commons license:

The mount contains two three mounting holes which can be used for screwing it against a wall as well as some cutouts at the bottom for the accessibility of the TS9 antenna, USB-C and Ethernet ports.

My model rendered by AutoDesk Fusion 360.

For the TS9 antenna ports, I am using the following TS-9 to SMA adapters which can be screwed into the respective holes of the mount. This allows a permanent installation of an external 5G/LTA antenna while the router can be easily removed as the adapters align right with the connectors of the router.

Screw-in TS-9 to SMA Adapters.
Final print.

Seminar: Camera-based PCB Analysis for Solder Paste Dispensing


The lectures during my last semester were largely focused on digital image processing. Combining this with the inspiration for 3D printing, I gathered through my trip though South Korea, resulted in the following seminar paper. Seminars are a compulsory part of our curriculum which I like due the self-contained work and the ability to pick an individual topic.

Over the past year, I’ve built my own Kossel 3D printer. The Mini Kossel is based on a novel parallel delta kinematic which was developed by Johann C. Rocholl, a Google engineer from Germany.

This paper is targeting the automation of solder paste dispensing onto printed circuit boards by using computer vision and RepRap robots.

Full Slides as PDF
Full Paper as PDF
Source Code at GitHub

Seminar: Image Processing and Content Analysis

Camera-based PCB Analysis for Solder Paste Dispensing

Steffen Vogel (
Academic Advisor: Wei Li (
Institute of Imaging & Computer Vision (LfB)
Rheinisch-Westfälische Technische Hochschule (RWTH), 52056 Aachen

1 Abstract

Two of the main challenges for PCB prototyping are the time-consuming setup of involved machines and their economic feasibility for small laboratories and hobbyists. This paper tries to offer solutions for both of these issues:

  1. The complex setup process of industrial machines can be accelerated by computer vision. It is preferable to automate this process as far as possible to enable the operation by untrained personnel and hobbyists. The workflow can be further simplified by not relying on external CAD data. This includes: detection of components, pads and footprints; mapping between available components and footprints and planning of shortest tool paths.
  2. The adaption of proven 3D printers allows to lower the costs for such machines. The lightweight and fast kinematics of parallel 3D-delta robots like the RepRap Mini Kossel are perfectly suited for the assembly of PCBs. Only the print head has to be exchanged between the individual steps of the process.

This work presents a workflow to control DIY 3D printers for the purpose of PCB assembly. By using cheap and easy-obtainable parts like proven RepRap 3D printers, this technique is viable for small laboratories, FabLabs and hobbyists. During the seminar, a analysis and control software for RepRap printers was written. Hence, we focus on the overall workflow and tools and less on algorithms and theory.
Here, the task of solder paste dispensing was chosen to be explored in detail. This work establishes the groundwork for more complex task like the pick and placing of electronic components.

2 Motivation

The ongoing miniaturization of electronic products like smartphones and Ultra Books has led to a new form factor for electronic components. Surface-mounted devices (SMD) are already widespread in electronic design and production. As a result, previously used through-hole components are gradually phased out. This miniaturization of SMD components is an ongoing trend and raises the barrier for hobbyists to produce PCBs themselves. Soldering and placement of 0401-sized resistors or BGA packages is not possible by hand any longer.

This work is motivated by the vision to build an all-in-one machine for the complete process of prototype PCB assembly (PCBA). To accelerate the development process and to reduce the costs, all of these tasks can be handled by a single workbench 3D printer / CNC mill. The PCB production process roughly can consists of the following steps:

  1. Isolation milling or pen plotting of PCB traces
  2. Drilling of holes and contours
  3. Solder paste dispensing for SMD pads with a syringe
  4. Pick-and-place of SMT components with vacuum
  5. Soldering with hot air, a hot plate or by a laser

For the scope of this paper, the process of solder paste dispensing was chosen. This task offers the biggest margin to profit from computer vision. Industrial mass production uses stencils to apply solder paste onto the PCB. For small prototype assemblies the fabrication of stencils is not worthwhile. Therefore, solder paste is applied manually with a pressurized syringe, which is hold by hand.
The dispensing of solder paste requires the knowledge exact solder pad positions and dimensions. Traditionally, this information is exported by CAD design tools and is required to produce the stencils.
But sometimes the CAD data is not available or stored in an inaccessible proprietary format. This paper presents techniques to gather the pad locations and dimensions by means of computer vision.

Fig. 1: Solder paste dispensing techniques
Fig. 1: Solder paste dispensing techniques
Fig. 2: 0805-sized resistor
Seminar: Camera-based PCB Analysis for Solder Paste Dispensing weiterlesen


tileLEDUnd schon wieder habe ich ein kleines Hardwareprojekt, das ich hier vorstellen möchte. Auf eBay bin ich auf diese günstige LED Dot-Matrix Displaymodule gestoßen. Auf einer Größe von 3x3cm besitzen sie 8×8 rote oder grüne LEDs, die per Multiplexverfahren angesteuert werden.

Für diese Module habe ich eine kleine Platine gelayoutet, die nicht größer ist als das Modul selber. Die LEDs werden über einen kleinen ATmega8 Mikrocontroller direkt angesteuert. Auf Konstantstromquellen habe ich hier zugunsten der Platinengröße verzichtet. Auch wenn diese Beschaltung den ATmega etwas überlastet, funktioniert es super.


Ursprünglich war geplant aus vielen kleinen Modulen ein interaktives Puzzle oder Dominospiel zu basteln. Dazu besitzen die Module an allen vier Seiten Lötpads für Versorgungsspannung und SPI, über die sie auch mit ISP geflasht werden können.

Aus Zeitgründen und der doch recht fizzeligen SMD Löterei habe ich mich jedoch dann dagegen entschieden. Aktuell setze ich ein paar der Displays in Verbindung mit einem digitalen Temperatursensor1 als einfaches Tischthermometer ein.

Auch hier habe ich einige Platinen zu verschenken bzw. tauschen. Vielleicht hat ja jemand die Muse sich mit der Kaskadierung mehrere Elemente auseinander zu setzen? Von den ursprünglich 40 Modulen sind jetzt noch ca. die Hälfe übrig. Aus ihnen bastele ich gerade größere „Tiles“ mit 24×24 und 32×32 Pixeln. Diese werden dann über 9 bzw. 16 74HC696 Schieberegister angesteuert, sodass nur noch ein Mikrocontroller benötigt wird. Unten könnt ihr die ersten Bilder der größeren Tiles sehen.

EAGLE Libraries: Raspberry Pi

Für mein neuestes Projekt habe ich mir die Mühe gemacht und meine EAGLE Bibliotheken aufgeräumt. EAGLE ist ein CAD Programm der Firma Cadsoft, das vornehmlich im Elektronik/DIY Bereich zum Designen von Schaltplänen und Platinen eingesetzt wird.

In den letzten Jahren haben sich einige selbsterstellte Bibliotheken angesammelt. Mit ihnen können die bereits mitgelieferte Datenbank von Bauteilen (Footprints und Symbole) erweitert werden.
Diese Bibliotheken und noch einige Skripte, Einstellungen, CAM Jobs etc. findet ihr in meinem GitHub Repository.

Ein Layout mit dem RPi Shield

Interessant ist vielleicht noch die Raspberry Pi Bibliothek. Bisher hab es noch keine EAGLE Bibliothek mit der man einfach Shields (vgl. Arduino) für den Board-Computer layouten konnte.
Die Bibliothek enthält die genauen Abmessungen des Pi’s und die Belegung aller GPIO Stiftleisten. Aber die folgenden Bilder erklären das sicher viel besser.

Viel Spaß damit!