My inspiration: the wall-mount and antenna adapter from FTS Hennig.
Unfortunately, the mount is with a price tag of around 50 EUR rather expensive. So I decided to use our new lab 3D-printer and try do design it myself usings AutoDesk’s Fusion 360 software. The result is released here under a creative commons license:
The mount contains two three mounting holes which can be used for screwing it against a wall as well as some cutouts at the bottom for the accessibility of the TS9 antenna, USB-C and Ethernet ports.
My model rendered by AutoDesk Fusion 360.
For the TS9 antenna ports, I am using the following TS-9 to SMA adapters which can be screwed into the respective holes of the mount. This allows a permanent installation of an external 5G/LTA antenna while the router can be easily removed as the adapters align right with the connectors of the router.
The lectures during my last semester were largely focused on digital image processing. Combining this with the inspiration for 3D printing, I gathered through my trip though South Korea, resulted in the following seminar paper. Seminars are a compulsory part of our curriculum which I like due the self-contained work and the ability to pick an individual topic.
Over the past year, I’ve built my own Kossel 3D printer. The Mini Kossel is based on a novel parallel delta kinematic which was developed by Johann C. Rocholl, a Google engineer from Germany.
This paper is targeting the automation of solder paste dispensing onto printed circuit boards by using computer vision and RepRap robots.
Two of the main challenges for PCB prototyping are the time-consuming setup of involved machines and their economic feasibility for small laboratories and hobbyists. This paper tries to offer solutions for both of these issues:
The complex setup process of industrial machines can be accelerated by computer vision. It is preferable to automate this process as far as possible to enable the operation by untrained personnel and hobbyists. The workflow can be further simplified by not relying on external CAD data. This includes: detection of components, pads and footprints; mapping between available components and footprints and planning of shortest tool paths.
The adaption of proven 3D printers allows to lower the costs for such machines. The lightweight and fast kinematics of parallel 3D-delta robots like the RepRap Mini Kossel are perfectly suited for the assembly of PCBs. Only the print head has to be exchanged between the individual steps of the process.
This work presents a workflow to control DIY 3D printers for the purpose of PCB assembly. By using cheap and easy-obtainable parts like proven RepRap 3D printers, this technique is viable for small laboratories, FabLabs and hobbyists. During the seminar, a analysis and control software for RepRap printers was written. Hence, we focus on the overall workflow and tools and less on algorithms and theory.
Here, the task of solder paste dispensing was chosen to be explored in detail. This work establishes the groundwork for more complex task like the pick and placing of electronic components.
2 Motivation
The ongoing miniaturization of electronic products like smartphones and Ultra Books has led to a new form factor for electronic components. Surface-mounted devices (SMD) are already widespread in electronic design and production. As a result, previously used through-hole components are gradually phased out. This miniaturization of SMD components is an ongoing trend and raises the barrier for hobbyists to produce PCBs themselves. Soldering and placement of 0401-sized resistors or BGA packages is not possible by hand any longer.
This work is motivated by the vision to build an all-in-one machine for the complete process of prototype PCB assembly (PCBA). To accelerate the development process and to reduce the costs, all of these tasks can be handled by a single workbench 3D printer / CNC mill. The PCB production process roughly can consists of the following steps:
Isolation milling or pen plotting of PCB traces
Drilling of holes and contours
Solder paste dispensing for SMD pads with a syringe
Pick-and-place of SMT components with vacuum
Soldering with hot air, a hot plate or by a laser
For the scope of this paper, the process of solder paste dispensing was chosen. This task offers the biggest margin to profit from computer vision. Industrial mass production uses stencils to apply solder paste onto the PCB. For small prototype assemblies the fabrication of stencils is not worthwhile. Therefore, solder paste is applied manually with a pressurized syringe, which is hold by hand.
The dispensing of solder paste requires the knowledge exact solder pad positions and dimensions. Traditionally, this information is exported by CAD design tools and is required to produce the stencils.
But sometimes the CAD data is not available or stored in an inaccessible proprietary format. This paper presents techniques to gather the pad locations and dimensions by means of computer vision.
Und schon wieder habe ich ein kleines Hardwareprojekt, das ich hier vorstellen möchte. Auf eBay bin ich auf diese günstige LED Dot-Matrix Displaymodule gestoßen. Auf einer Größe von 3x3cm besitzen sie 8×8 rote oder grüne LEDs, die per Multiplexverfahren angesteuert werden.
Für diese Module habe ich eine kleine Platine gelayoutet, die nicht größer ist als das Modul selber. Die LEDs werden über einen kleinen ATmega8 Mikrocontroller direkt angesteuert. Auf Konstantstromquellen habe ich hier zugunsten der Platinengröße verzichtet. Auch wenn diese Beschaltung den ATmega etwas überlastet, funktioniert es super.
Ursprünglich war geplant aus vielen kleinen Modulen ein interaktives Puzzle oder Dominospiel zu basteln. Dazu besitzen die Module an allen vier Seiten Lötpads für Versorgungsspannung und SPI, über die sie auch mit ISP geflasht werden können.
Aus Zeitgründen und der doch recht fizzeligen SMD Löterei habe ich mich jedoch dann dagegen entschieden. Aktuell setze ich ein paar der Displays in Verbindung mit einem digitalen Temperatursensor1 als einfaches Tischthermometer ein.
Auch hier habe ich einige Platinen zu verschenken bzw. tauschen. Vielleicht hat ja jemand die Muse sich mit der Kaskadierung mehrere Elemente auseinander zu setzen? Von den ursprünglich 40 Modulen sind jetzt noch ca. die Hälfe übrig. Aus ihnen bastele ich gerade größere „Tiles“ mit 24×24 und 32×32 Pixeln. Diese werden dann über 9 bzw. 16 74HC696 Schieberegister angesteuert, sodass nur noch ein Mikrocontroller benötigt wird. Unten könnt ihr die ersten Bilder der größeren Tiles sehen.
Für mein neuestes Projekt habe ich mir die Mühe gemacht und meine EAGLE Bibliotheken aufgeräumt. EAGLE ist ein CAD Programm der Firma Cadsoft, das vornehmlich im Elektronik/DIY Bereich zum Designen von Schaltplänen und Platinen eingesetzt wird.
In den letzten Jahren haben sich einige selbsterstellte Bibliotheken angesammelt. Mit ihnen können die bereits mitgelieferte Datenbank von Bauteilen (Footprints und Symbole) erweitert werden.
Diese Bibliotheken und noch einige Skripte, Einstellungen, CAM Jobs etc. findet ihr in meinem GitHub Repository.
Interessant ist vielleicht noch die Raspberry Pi Bibliothek. Bisher hab es noch keine EAGLE Bibliothek mit der man einfach Shields (vgl. Arduino) für den Board-Computer layouten konnte.
Die Bibliothek enthält die genauen Abmessungen des Pi’s und die Belegung aller GPIO Stiftleisten. Aber die folgenden Bilder erklären das sicher viel besser.
Viel Spaß damit!
Das Eagle Schaltplan Symbol
Ein Layout mit dem RPi Shield
Ein aufgestecktes Shield
Ein Shield, das mir meiner Bibliothek leicht erstellt werden kann
Vielleicht habt ihr ja Lust ein kleines Ambilight zu basteln? Ich habe noch ne Menge der Platinen übrig, die ich gerne in Aachen verschenken oder tauschen würde. LEDs sind dir zu langweilig? Ich hab auch noch andere Platinen übrig…
das Layout
Makro
jede Menge Platinen
In meinen älteren Beträgen (hier und hier) gibt es auch noch ein paar kleine Anregungen was man alles mit dem flm so anstellen kann.