
A generic memory management with paging
for a minimalistic operating system

Bachelor Thesis Defense

Steffen Vogel

06/18/2014

Motivation

Add support for 64 bit userspace in MetalSVM

32 bit only systems become rare

... also for embedded systems

Intel SCC ⇒ Intel Xeon Phi

Find the most minimalistic way to implement paging

Try something different to known Unixes / Linuxes / BSDs

Explore the limits of the x86 memory architecture1

1The Intel x86 MMU is turing complete [1]. ,

06/18/2014 | LfBS Chair for Operating Systems | 2
Steffen Vogel

Agenda

Objective

MetalSVM

Paging
Self-mapped Page Tables

Conclusion
Skipped parts

Outlook

06/18/2014 | LfBS Chair for Operating Systems | 3
Steffen Vogel

Objective

Full paging support of 64 bit userspace processes

Improve code quality and perspicuity

Unified implementation for 32 and 64 bit

Focus on virtual memory. Not:
Demand-Paging, Swapping, Segmentation

Copy-on-Write

NUMA2 optimization

Physical memory allocation

2Non-Uniform Memory Access.

06/18/2014 | LfBS Chair for Operating Systems | 4
Steffen Vogel

Objective

Full paging support of 64 bit userspace processes

Improve code quality and perspicuity

Unified implementation for 32 and 64 bit

Focus on virtual memory. Not:
Demand-Paging, Swapping, Segmentation

Copy-on-Write

NUMA2 optimization

Physical memory allocation

2Non-Uniform Memory Access.

06/18/2014 | LfBS Chair for Operating Systems | 4
Steffen Vogel

MetalSVM

Minimal research operating system3

Developed at the former LfBS [5]

Targeted at Intel’s x86 architecture (IA-32)

Supports 64 bit extensions (Intel 64, IA-32e)

Simple ARM port available

Hypervisor for Intel’s Single-chip Cloud Computer (SCC)

Spin-off of eduOS

Kernel used for education at the RWTH4

"Operating Systems" lectured at the ACS

3http://www.metalsvm.org/.
4http://www.github.com/RWTH-OS/eduOS.

06/18/2014 | LfBS Chair for Operating Systems | 5
Steffen Vogel

http://www.metalsvm.org/
http://www.github.com/RWTH-OS/eduOS

Paging Basics

Virtual Address Space

Page

Page Frame

Physical Address Space

0

0

ASPmax

VAmax

VPN → PFN

MMU

06/18/2014 | LfBS Chair for Operating Systems | 6
Steffen Vogel

Intel’s x86 Architecture

Address translation by page tables

Hierarchical lookup tables compose a search tree

Reduced size in contrary to flat table

Tables reside in the main memory

With up to four levels of indirection:

PML4 Page Map Level 4

PDPT Page Directory Pointer Table

PGD Page Directory

PGT Page Table

Translation Lookaside Buffer (TLB)

06/18/2014 | LfBS Chair for Operating Systems | 7
Steffen Vogel

Page Table Walk: 32 bit

There are two levels of tables in legacy 32 bit [4]:

Virtual Address

0112131
#PGD #PGT Offset

06/18/2014 | LfBS Chair for Operating Systems | 8
Steffen Vogel

Page Table Walk: 32 bit

There are two levels of tables in legacy 32 bit [4]:

Virtual Address

0112131
#PGD #PGT Offset

physical index

PDE

10

CR3

PGD

06/18/2014 | LfBS Chair for Operating Systems | 8
Steffen Vogel

Page Table Walk: 32 bit

There are two levels of tables in legacy 32 bit [4]:

Virtual Address

0112131
#PGD #PGT Offset

physical index

PDE

10

CR3

PGD

10

PTE

0

210
PGT

06/18/2014 | LfBS Chair for Operating Systems | 8
Steffen Vogel

Page Table Walk: 32 bit

There are two levels of tables in legacy 32 bit [4]:

Virtual Address

0112131
#PGD #PGT Offset

physical index

PDE

10

CR3

PGD

10

PTE

0

210
PGT

+

Physical Address

12

06/18/2014 | LfBS Chair for Operating Systems | 8
Steffen Vogel

Multi Level Paging: 64 bit

Larger address space requires more levels of indirection:

+

Physical Address

physical index

01120293847
#PML4 #PDPT #PGD #PGT Offset

PML4E

PDPTE

PDE

9 9 9 9 12

PTE

0

29

CR3

PML4 PDPT PGD PGT

Table

Virtual Address

06/18/2014 | LfBS Chair for Operating Systems | 9
Steffen Vogel

Operations on Tables

Address translations are performed by hardware (MMU).
OS only needs the ability to modify the tables:

Map page frames map_region()

Un-map page frames unmap_region()

Copy a whole page map tree copy_page_map()

Delete a whole page map tree drop_page_map()

Change properties of a mapping set_page_flags()

06/18/2014 | LfBS Chair for Operating Systems | 10
Steffen Vogel

Operations on Tables

Address translations are performed by hardware (MMU).
OS only needs the ability to modify the tables:

Map page frames map_region()

Un-map page frames unmap_region()

Copy a whole page map tree copy_page_map()

Delete a whole page map tree drop_page_map()

Change properties of a mapping set_page_flags()

06/18/2014 | LfBS Chair for Operating Systems | 10
Steffen Vogel

Operations on Tables

Address translations are performed by hardware (MMU).
OS only needs the ability to modify the tables:

Map page frames map_region()

Un-map page frames unmap_region()

Copy a whole page map tree copy_page_map()

Delete a whole page map tree drop_page_map()

Change properties of a mapping set_page_flags()

06/18/2014 | LfBS Chair for Operating Systems | 10
Steffen Vogel

Problem

Page tables are referenced by physical addresses

Everything else would incur a endless recursion

OS can only access virtual addresses directly5

We need to map the tables into the virtual address space!

5At least in 64 bit mode.

06/18/2014 | LfBS Chair for Operating Systems | 11
Steffen Vogel

Previous Approach

MetalSVM used to have an additional table for this purpose.

Virtual Address

2131
#PGDcontainer

10 10

PGD

PDE

pgt_container

011
0

1
#PGT

PGT

PTE

10

Table
entry

#PGD

PTE

0

210

physical index

CR3

06/18/2014 | LfBS Chair for Operating Systems | 12
Steffen Vogel

Drawbacks

Additional space required for containers

Multiple containers per process

Multiple containers per paging level

Managable for 32 bit ⇒ becomes tricky for 64 bit

Tables and containers have to be kept in sync

Free/Allocate space of containers and tables

06/18/2014 | LfBS Chair for Operating Systems | 13
Steffen Vogel

Avoid too much Containers

06/18/2014 | LfBS Chair for Operating Systems | 14
Steffen Vogel

Self-mapped Page Tables

SOLUTION:
Use self-references to reuse the root-table as a container.

No containers required

No waste of memory due to overhead

Only virtual address space is occupied

All page tables of the current process
are mapped in the Virtual Address
Space

Figure: The ouroboros.

06/18/2014 | LfBS Chair for Operating Systems | 15
Steffen Vogel

Self-mapped Page Table Walk

+

Physical Address

physical index

01120293847
#PML4 #PDPT #PGD #PGT Offset

PML4E

PDPTE

PDE

9 9 9 9 12

PTE

0

29

CR3

PML4 PDPT PGD PGT

Table

Virtual Address

Figure: Paging in Longmode.

06/18/2014 | LfBS Chair for Operating Systems | 16
Steffen Vogel

Self-mapped Page Table Walk

Virtual Address

PDPTE

PDE

9 9 9 9 9

PTE

CR3

PML4 PDPT PGD PGT

01120293847

PML4E

511

#PDPT #PGD #PGT 0#PML4

PML4

Table

2

entry

511

511

physical indexself-mapped

0

29

Figure: Self-mapped Page Tables (PGTs).

06/18/2014 | LfBS Chair for Operating Systems | 16
Steffen Vogel

Self-mapped Page Table Walk

Virtual Address

PML4E

PDPTE

9 9 9 9 9

PDE

CR3

PML4 PDPT PGD

01120293847
#PML4 #PDPT #PGD 0

Table

2

entry

511

511

physical indexself-mapped

PML4 PML4
511

511

0

29

Figure: Self-mapped Page Directorys (PGDs).

06/18/2014 | LfBS Chair for Operating Systems | 16
Steffen Vogel

Self-mapped Page Table Walk

Virtual Address

PML4E

9 9 9 9 9

PDPTE

CR3

PML4 PDPT

01120293847
#PML4 #PDPT 0

Table

2

entry

511

511

physical indexself-mapped

511
PML4

511
PML4 PML4

511 511

0

29

Figure: Self-mapped Page Directory Pointer Tables (PDPTs).

06/18/2014 | LfBS Chair for Operating Systems | 16
Steffen Vogel

Self-mapped Page Table Walk

Virtual Address

9 9 9 9 9

PML4E

CR3

PML4

01120293847
#PML4 0

Table

2

entry

511

511

physical indexself-mapped

511
PML4

511 511
PML4PML4PML4

511 511 511

0

29

Figure: Self-mapped Page Map Level 4 (PML4).

06/18/2014 | LfBS Chair for Operating Systems | 16
Steffen Vogel

Table Base Addresses

All page tables (including PGD .. PML4) are accessible by
using the following addresses:

Table Address
PGT 0xFFFFFF8000000000
PGD 0xFFFFFFFFC0000000
PDPT 0xFFFFFFFFFFE00000
PML4 0xFFFFFFFFFFFFF000

This example the last (512th) entry for self-referencing.
All other entries could also be used.

06/18/2014 | LfBS Chair for Operating Systems | 17
Steffen Vogel

Traversal: Top-Down

Multi-level page tables constitute a search tree

Root: PML4 table

Leaves: PGT’s

Using known tree traversals (pre, post, in-order)

Start at the root node

Descend to the PGT’s

Using recursive function invocations per table/node

Different operations require diffrent traversals

06/18/2014 | LfBS Chair for Operating Systems | 18
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Tree Traversals

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 19
Steffen Vogel

Traversal: Bottom-Up

Start in the lowest-order table (PGT)

Update superior table

Updates on missing tables will cause a page-fault

Use page-fault handler to create tables on-the-fly

Nested page-faults might occur

06/18/2014 | LfBS Chair for Operating Systems | 20
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Pagefaults

PML4

PDPT

PGD

PGT

Pages

06/18/2014 | LfBS Chair for Operating Systems | 21
Steffen Vogel

Who else?

Not so many...
Hobby OSes6

Microsoft’s NT kernel [3]?

Mentioned by the Alpha Architecture reference manual [2]

Why is it not widely used?
Not documented in official Intel and AMD manuals

Not as portable as expected

Only some of the Linux’s architectures support it

6http://wiki.osdev.org/Page_Tables.

06/18/2014 | LfBS Chair for Operating Systems | 22
Steffen Vogel

http://wiki.osdev.org/Page_Tables

Conclusion

Rewrite of paging subsystem with more features:

Complete support of 64 bit user space applications

Release of unused page tables

Partial support for huge pages7

Execute-disable flag8

Additional operations:

Print page dump

Collect statistics (accessed / dirty)

... and more can easily be implemented

7Larger page sizes by truncating the table walk.
8Disable code execution in certain memory regions.

06/18/2014 | LfBS Chair for Operating Systems | 23
Steffen Vogel

Conclusion

Rewrite of paging subsystem with more features:

Complete support of 64 bit user space applications

Release of unused page tables

Partial support for huge pages7

Execute-disable flag8

Additional operations:

Print page dump

Collect statistics (accessed / dirty)

... and more can easily be implemented

7Larger page sizes by truncating the table walk.
8Disable code execution in certain memory regions.

06/18/2014 | LfBS Chair for Operating Systems | 23
Steffen Vogel

Conclusion

Rewrite of paging subsystem with more features:

Complete support of 64 bit user space applications

Release of unused page tables

Partial support for huge pages7

Execute-disable flag8

Additional operations:

Print page dump

Collect statistics (accessed / dirty)

... and more can easily be implemented

7Larger page sizes by truncating the table walk.
8Disable code execution in certain memory regions.

06/18/2014 | LfBS Chair for Operating Systems | 23
Steffen Vogel

Conclusion

Self-mapped approach isn’t as generic as expected

Comparison to Linux is difficult:

Different malloc() strategies (glibc vs newlib)

MetalSVM has larger overhead for rising a page fault

Linux is fast for mapping single pages
but slower for mapping large regions.

Smaller and unified code base: easier maintainability

Less macro hacking: improved readability of code

06/18/2014 | LfBS Chair for Operating Systems | 24
Steffen Vogel

Conclusion

Self-mapped approach isn’t as generic as expected

Comparison to Linux is difficult:

Different malloc() strategies (glibc vs newlib)

MetalSVM has larger overhead for rising a page fault

Linux is fast for mapping single pages
but slower for mapping large regions.

Smaller and unified code base: easier maintainability

Less macro hacking: improved readability of code

06/18/2014 | LfBS Chair for Operating Systems | 24
Steffen Vogel

What else?

Virtual Memory Area (VMA) in Kernel Space

Previously: find free region by walking through the tables

Slow, architecture dependend

Demand-Paging, Swapping?

Dynamic heap allocator in Kernel Space (Buddy System)

Previously: allocate with page size granularity

Waste of memory

Slow (un-)mapping

06/18/2014 | LfBS Chair for Operating Systems | 25
Steffen Vogel

What else?

Automation of test cycles

Tests on real hardware and SMP

Shorter turnaround times between test cycles

UART, PXE ...

Benchmarks

Performance Monitoring Counter (PMC)

Membench

Translation Lookaside Buffer / Cache misses

06/18/2014 | LfBS Chair for Operating Systems | 26
Steffen Vogel

Outlook

Complete 32 bit version in MetalSVM

Port concept to eduOS9

Evaluate portability to other architectures

64 bit ARM?

Sparc?

Alpha!

Still room for performance improvements

9Work in progress.

06/18/2014 | LfBS Chair for Operating Systems | 27
Steffen Vogel

Thank you for your kind attention!

Steffen Vogel – post@steffenvogel.de

Institute for Automation of Complex Power Systems
(Started at the Chair for Operating Systems)

E.ON Energy Research Center, RWTH Aachen University
Mathieustraße 10
52074 Aachen

www.eonerc.rwth-aachen.de
www.lfbs.rwth-aachen.de

Find code, slides and thesis at:
www.steffenvogel.de/2014/06/13/bachelor

mailto:post@steffenvogel.de
www.eonerc.rwth-aachen.de
www.lfbs.rwth-aachen.de
www.steffenvogel.de/2014/06/13/bachelor

Selected References

[1] J. Bangert, S. Bratus, and R. Shapiro.
Shmoocon talk: Page fault liberation army.
Trust Lab, Dartmouth College, Februar 2013.

[2] Compaq Computer Corporation, Houston, TX, USA.
Alpha Architecture Reference Manual, 4 edition, Januar 2002.

[3] Dave Probert.
Windows Kernel Architecture Internals.
Microsoft, MSRA/UR Workshop - Beijing, China, April 2010.

[4] Intel Corporation, Santa Klara, CA, USA.
Intel 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B &
3C: System Programming Guide, Februar 2014.

[5] P. Reble, J. Galowicz, S. Lankes, and T. Bemmerl.
Efficient implementation of the bare-metal hypervisor MetalSVM for the SCC.
In Proceedings of the 6th Many-core Applications Research Community (MARC)
Symposium, pages 59–65, Juli 2012.

06/18/2014 | LfBS Chair for Operating Systems | 29
Steffen Vogel

Acronyms

ASP Main Memory

CL Cache Line

L1 Level 1 Cache

L2 Level 2 Cache

MMU Memory Management Unit

PFN Page Frame Number

PMC Performance Monitoring
Counter

TLB Translation Lookaside
Buffer

VA Virtual Address Space

PA Physical Address Space

PS Page Size

VMA Virtual Memory Area

VPN Virtual Page Number

PML4 Page Map Level 4

PML4E Page Map Level 4 Entry

PDPT Page Directory Pointer
Table

PDPTE Page Directory Pointer
Table Entry

PGD Page Directory

PDE Page Directory Entry

PGT Page Table

PTE Page Table Entry

PF Page Frame

CR3 Control Register 3

06/18/2014 | LfBS Chair for Operating Systems | 30
Steffen Vogel

Benchmarks

Performance Monitoring Counter (PMC)

Membench

Walk through memory by varying range and stride

Measure cost in terms CPU cycles and cache / TLB miss
ratios

Infer cache and TLB sizes from results

range

RANGE_MAX

repeat 1000 times

stride

06/18/2014 | LfBS Chair for Operating Systems | 31
Steffen Vogel

Membench Results

20 26 (CL) 212 (PS) 22025210(L1) 215
(L2) 222

(L1) 2.5

(L2) 4,5

10

20
30

(ASP) 40

70

Stride

20

40

60

80

06/18/2014 | LfBS Chair for Operating Systems | 32
Steffen Vogel

Access Latency

20 26 (CL) 212 (PS) 220

Stride

25

210

(L1) 215

(L2) 222

10

20

30

40

50

60

70

80

La
te

nz
in

Ta
kt

en
/Z

ug
rif

f

06/18/2014 | LfBS Chair for Operating Systems | 33
Steffen Vogel

Cache / TLB misses

25

210

215

220

225

0.0

0.2

0.4

0.6

0.8

1.0

20 25

210 220

25

210

215

220

225

20 25

220

Stride (Byte)

M
is

s
R

at
e

R
an

ge
(B

yt
e)

215 25

210

L1 Cache L2 Cache

L1 TLBL0 TLB

06/18/2014 | LfBS Chair for Operating Systems | 34
Steffen Vogel

Mapping Cost

0

24.6

39

54

68

138 650 1162 1674

Ta
kt

e
in

Ts
d.

Seiten

06/18/2014 | LfBS Chair for Operating Systems | 35
Steffen Vogel

	Title page
	Objective
	MetalSVM
	Paging
	Self-mapped Page Tables

	Conclusion
	Skipped parts

	Outlook

