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ABSTRACT
The adoption of 64 bit architectures went along with an ex-
tension of the virtual address space (VAS). To cope with
this growth, the memory management unit (MMU) had to
be extended as well. For paging-based systems like Intel’s
x86-architecture this was realized by adding more levels of
indirection to the page table walk.

This walk translates virtual pages to physical page frames (PF)
by performing look-ups in a radix / prefix tree in which every
node represents a page table (Figure 1a). Since the tables
are part of the translation process, they must be referenced
by physical page frame numbers (PFN, blue line). As the
operating system is only eligible to access the VAS, it cannot
follow the path of a walk. In order to allow the manipulation
of page tables, it must provide:

• Access to the table entries, by mapping the tables
themselves to the VAS.

• A mapping between physical references to correspond-
ing locations in the VAS.

Additionally, every level of the page table walk increases
the complexity of managing these mappings. They also in-
crease the memory consumption by occupying physical page
frames. It is possible to avoid both drawbacks by the tech-
nique described in the following.

In my bachelor thesis, I presented an approach, which is
compatible with both the 32 bit and 64 bit version of Intel’s
x86-architecture. This allows for a replacement of two code
bases, one for each architecture, by one supporting both.
Thus, results in a shorter, easier comprehensible, and main-
tainable code. As foundation for this implementation our

∗A full version of the thesis and slides are available at:
http://www.noteblok.net/2014/06/14/bachelor/
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teaching OS called “eduOS” was used1. “eduOS” supports
only the 32 bit protected mode whereas the 64 bit longmode
is only implemented for an internal research kernel.

Thanks to the sophisticated design of Intel’s x86 MMU, it
is possible to avoid most of the complexity and space re-
quirements by using a little trick. Adding a self-reference
in the root table (PML4 resp. PGD) automatically enables
access to all page tables from the VAS without the need for
manual mappings as described above (Figure 1b). The op-
erating system does not need to manually follow the path of
a page table walk, as this task is executed by the MMU for
accessing individual tables instead of page frames.

An access to the VAS region covered by a self-reference
causes the MMU to look up the root table twice (red line).
Effectively, this shifts the whole page table walk by one level.
Therefore, it stops with the PFN of page tables instead of
page frames that are usually translated by the MMU. Here,
both the PML4 and PDPT indexes are used to choose an
entry out of the PML4 table. Therefore, it must be guaran-
teed that PML4 entries can be interpreted as PDPT entries,
too. This demands for the following requirements:

• Homogenous coding of paging flags across all paging
levels.

• Equal table sizes across all paging levels.

Fortunately, the x86-architecture complies with this prereq-
uisites as shown in Figure 2. Green colored flags are coded
consistently across all paging levels. Only PAT, size and
global flags have a slightly different meaning for entries in
the PGT. My bachelor thesis shows that these deviations
still allow maintaining full control caching and memory pro-
tection properties of self-mapped tables. This includes for
common system calls like fork() and kill().

By repeatedly addressing the self-reference, it is also pos-
sible to access tables of the upper levels (PGD to PML4).
Table 1 shows the resulting virtual addresses of all page ta-
bles when using the last (512th) entry of the PML4 table for
the self-reference2. This grants access to all possible page
1Description and source code at:
http://www.os.rwth-aachen.de
2This is an arbitrary choice. All other entries are feasible,
too.

http://www.noteblok.net/2014/06/14/bachelor/
http://www.os.rwth-aachen.de
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Figure 2: Similar flags across all paging levels.

Table 32 bit 64 bit
Protected-Mode Longmode

PGT 0xFFC00000 0xFF8000000000

PGD 0xFFFFF000 0xFFFFC0000000

PDPT – 0xFFFFFFE00000

PML4 – 0xFFFFFFFFF000

Table 1: Virtual addresses of self-mapped tables.

tables, including those which might not yet exist and may
be allocated in the future. Hence, the self-reference reserves
a fixed fraction of the VAS for the page tables. The size
of this region is equal to 1

512
· 256 TiB = 512 GiB for 64 bit

(resp. 1
1024

· 4 GiB = 4 MiB for 32 bit), which is negligible in

comparison to the huge VAS of 248 byte.

For the manipulation of page table entries two approaches
are feasible:

Top-down Use known tree traversals, starting at the root
node, which corresponds to the PML4 respectively PGD.

Bottom-up Use the page fault handler to create new tables
on-the-fly, when they are not yet present.

But there are also other architectures which satisfy the pre-
requisites described above. One of these is the Alpha3 archi-
tecture, which suggests a similar approach in the reference
manual. Intel and AMD do not mention the technique in
their x86 manuals. In the field of operating systems, sup-
port is far more limited. There is only a single reference4

dated to 2010 indicating that Microsoft might use a simi-
lar approach for its NT kernel. Linux cannot profit because
its paging implementation must support a broad selection
of virtual memory architectures of which not all fulfill the
requirements mentioned above.

3Compaq Computer Corporation: Alpha Architecture
Reference Manual. January 2002
4Dave Probert, Microsoft: Windows Ker-
nel Architecture Internals. April 2010. http:
//research.microsoft.com/en-us/um/redmond/events/
wincore2010/Dave_Probert_1.pdf

http://research.microsoft.com/en-us/um/redmond/events/wincore2010/Dave_Probert_1.pdf
http://research.microsoft.com/en-us/um/redmond/events/wincore2010/Dave_Probert_1.pdf
http://research.microsoft.com/en-us/um/redmond/events/wincore2010/Dave_Probert_1.pdf
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Figure 1: Page table walk in the x86 64 longmode.


